Electrolyte-Mediated Assembly of Charged Nanoparticles.

نویسندگان

  • Sumit Kewalramani
  • Guillermo I Guerrero-García
  • Liane M Moreau
  • Jos W Zwanikken
  • Chad A Mirkin
  • Monica Olvera de la Cruz
  • Michael J Bedzyk
چکیده

Solutions at high salt concentrations are used to crystallize or segregate charged colloids, including proteins and polyelectrolytes via a complex mechanism referred to as "salting-out". Here, we combine small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and liquid-state theory to show that salting-out is a long-range interaction, which is controlled by electrolyte concentration and colloid charge density. As a model system, we analyze Au nanoparticles coated with noncomplementary DNA designed to prevent interparticle assembly via Watson-Crick hybridization. SAXS shows that these highly charged nanoparticles undergo "gas" to face-centered cubic (FCC) to "glass-like" transitions with increasing NaCl or CaCl2 concentration. MD simulations reveal that the crystallization is concomitant with interparticle interactions changing from purely repulsive to a "long-range potential well" condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces that originate from the interelectrolyte ion and electrolyte-ion-nanoparticle positional correlations. Our work provides fundamental insights into the effect of ionic correlations in the salting-out mechanism and suggests new routes for the crystallization of colloids and proteins using concentrated salts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong attractions and repulsions mediated by monovalent salts.

Controlling interactions between proteins and nanoparticles in electrolyte solutions is crucial for advancing biological sciences and biotechnology. The assembly of charged nanoparticles (NPs) and proteins in aqueous solutions can be directed by modifying the salt concentration. High concentrations of monovalent salt can induce the solubilization or crystallization of NPs and proteins. By using...

متن کامل

Asymmetric charge renormalization for nanoparticles in aqueous media.

The effective renormalized charge of nanoparticles in an aqueous electrolyte is essential to determine their solubility. By using a molecular model for the supporting aqueous electrolyte, we find that the effective renormalized charge of the nanoparticles is strongly dependent on the sign of the bare charge. Negatively charged nanoparticles have a lower effective renormalized charge than positi...

متن کامل

Large counterions boost the solubility and renormalized charge of suspended nanoparticles.

Colloidal particles are ubiquitous in biology and in everyday products such as milk, cosmetics, lubricants, paints, or drugs. The stability and aggregation of colloidal suspensions are of paramount importance in nature and in diverse nanotechnological applications, including the fabrication of photonic materials and scaffolds for biological assemblies, gene therapy, diagnostics, targeted drug d...

متن کامل

Salt-mediated kinetics of the self-assembly of gold nanorods end-tethered with polymer ligands.

Studies on the self-assembly of metal nanoparticles (NPs) in the presence of ions are motivated by the biosensing applications of NP clusters and the capability to control the morphology of clusters of oppositely charged NPs. The effect of ions has been explored for the self-assembly of metal NPs capped solely with ionic ligands, whereas, in general, the surface of NPs can be coated with a mixt...

متن کامل

Bridging interactions of proteins with silica nanoparticles: the influence of pH, ionic strength and protein concentration.

Charge-driven bridging of nanoparticles by macromolecules represents a promising route for engineering functional structures, but the strong electrostatic interactions involved when using conventional polyelectrolytes impart irreversible complexation and ill-defined structures. Recently it was found that the electrostatic interaction of silica nanoparticles with small globular proteins leads to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS central science

دوره 2 4  شماره 

صفحات  -

تاریخ انتشار 2016